余金权教授,1987年在澳门梅高美登录_澳门美高梅网址获得化学专业学士学位,并在中国科学院上海有机化学研究所学习一年(戴立信院士指导),后加入中国科学院广州化学研究所攻读硕士学位,在萧树德教授的指导下从事萜烯化学和异相催化研究,并于1990年获得硕士学位。之后他在剑桥大学J. B. Spencer教授的指导下从事生物合成和不对称氢化反应的机理研究,并于1999年获得博士学位。2001年至2002年,他作为博士后在哈佛大学E. J. Corey教授实验室从事钯催化的烯丙基氧化反应研究。2002年回到剑桥大学,于2003年被选为剑桥大学化学系英国皇家学会研究员,开始他对不对称催化C-H键活化反应的独立研究。2004年,他担任美国布兰迪斯大学助理教授。2007年加入斯克里普斯研究所担任副教授,2010年晋升为正教授。2012年被任命为斯克里普斯研究所化学系Frank and Bertha Hupp教授。 余金权教授是国际上C–H键活化领域最为活跃的学者。
他的研究领域主要为:C–H键活化研究及其在新药研发和天然产物全合成领域的应用。他在惰性C–H键的选择性活化和重组研究方面开展了非常原创的工作,例如弱配位作用促进的金属钯催化的C–H键活化、远程C–H键活化和不对称C–H键活化等。余金权教授已在国际著名学术期刊上发表300多篇学术论文,包括二十多篇Nature,Science论文,引用次数接近6万次,h指数128,并且获得了ACS Cope Scholar Award(2012)、Mukaiyama Award(2012), Raymond and Beverly Sackler Prize in the Physical Sciences(2013)、Elias J. Corey Award(2014)、麦克阿瑟天才奖(2016), ACS Gabor A. Somorjai Award for Creative Research in Catalysis(2022)等诸多国际著名奖项,并于2019年当选美国艺术与科学院院士。
The widespread presence of C–H bonds at various sites of synthetic substrates renders C–H activation the most powerful platform for developing catalytic reactions for synthesis. To realize the full potential of C–H activation for synthesis, four fundamental challenges must be addressed: developing diverse carbon-carbon and carbon-heteroatom bond forming reactions of diverse poorly reactive native substrates (ReactivitY); enantioselective C–H activation reactions via asymmetric metalation of C–H bonds (EnantioselectivitY); site selective metalation and functionalization of remote C–H bonds (Site-selectivitY); achieving catalytic cycles using sustainable oxidants such as molecular oxygen, aqueous hydrogen peroxides as the terminal oxidants (SustainabilitY). Despite century-long efforts, seeking solutions to these problems has met with limited success due to a fundamental challenge: lack of ligands that can accelerate C–H activation reactions. By combining the weak coordination (entropy) from substrates and ligand acceleration (enthalpy), we have made substantial progress towards addressing these four challenges. Most notably, eight generations of bi-functional ligands (MPAA, APAQ, APAO, MPAAm, MPAThio, Pyridine-Pyridone, Amine-Pyridone, Amide-Pyridone) have been developed to enable a wide range of enantioselective and site-selective C–H activation reactions of diverse classes of native substrates. In parallel, we have realized C–H hydroxylation using molecular oxygen or aqueous hydrogen peroxide as the terminal oxidants, paving the way for large-scale industrialization. Applications of our new catalysts and reactions at BMS, Lilly, Merck and Vertex will be highlighted.